欧美成人永久免费_欧美日本五月天_A级毛片免看在线_国产69无码,亚洲无线观看,精品人妻少妇无码视频,777无码专区,色大片免费网站大全,麻豆国产成人AV网,91视频网络,亚洲色无码自慰

當(dāng)前位置:網(wǎng)站首頁 >> 作文 >> 最新有理數(shù)運(yùn)算律教學(xué)反思(10篇)

最新有理數(shù)運(yùn)算律教學(xué)反思(10篇)

格式:DOC 上傳日期:2023-03-07 09:03:11
最新有理數(shù)運(yùn)算律教學(xué)反思(10篇)
時(shí)間:2023-03-07 09:03:11     小編:admin

在日常學(xué)習(xí),、工作或生活中,,大家總少不了接觸作文或者范文吧,通過文章可以把我們那些零零散散的思想,聚集在一塊,。大家想知道怎么樣才能寫一篇比較優(yōu)質(zhì)的范文嗎,?下面我給大家整理了一些優(yōu)秀范文,,希望能夠幫助到大家,,我們一起來看一看吧。

有理數(shù)運(yùn)算律教學(xué)反思篇一

通過一個(gè)問題,,梳理有關(guān)整數(shù)和小數(shù)的運(yùn)算順序和運(yùn)算律的知識,,幫助學(xué)生構(gòu)建知識體系,喚起學(xué)生對這些已有的知識的回顧,,為學(xué)習(xí)新知識做準(zhǔn)備,。然后,讓學(xué)生猜測,,我們學(xué)過的運(yùn)算性質(zhì)對于分?jǐn)?shù)四則混合運(yùn)算適用嗎,?這樣引起學(xué)生的興趣,激發(fā)好奇心,。

是在教師的引導(dǎo)下,,學(xué)生從已有的知識出發(fā),經(jīng)過自己的思考,,主動(dòng)探索,合作交流獲取新知識,,讓學(xué)生感悟知識間的內(nèi)在聯(lián)系,。通過讓學(xué)生自主解決問題,分析,、觀察特點(diǎn),,找出算式中的共性特點(diǎn),借助前面的知識進(jìn)行遷移,,小組匯報(bào)時(shí),,充分說明計(jì)算的依據(jù),學(xué)生在探究過程中有對前面知識進(jìn)行思考與歸納,,將學(xué)習(xí)方法進(jìn)一步歸納整合,,使學(xué)生進(jìn)一步感知整數(shù)的運(yùn)算順序和運(yùn)算律同樣適用于分?jǐn)?shù)的四則混合運(yùn)算。

又讓學(xué)生回扣前面的知識,,將整數(shù),、小數(shù)、分?jǐn)?shù)的整個(gè)知識體系進(jìn)行溝通,,幫助學(xué)生架構(gòu)起知識之間的關(guān)系,。

這節(jié)課上完后,我認(rèn)為基本達(dá)到了我的預(yù)期目標(biāo),,學(xué)生對知識掌握的比較扎實(shí),,但也有需要改進(jìn)的地方,。一、本節(jié)課是圍繞著我國世界文化遺產(chǎn)為主題,,展開問題的發(fā)現(xiàn),、探究與解答。因此在對學(xué)生進(jìn)行悠久文化歷史的熏陶上做的不到位,,要讓學(xué)生在增加課外知識的過程中產(chǎn)生對身為中國人的自豪感,,同時(shí)激發(fā)了學(xué)生的學(xué)習(xí)興趣。二,、學(xué)生自主探索后練習(xí)的時(shí)間有些緊張,,運(yùn)算定律簡便計(jì)算題沒有進(jìn)行練習(xí),練習(xí)的題目多樣性不夠,。如果能在這兩個(gè)方面進(jìn)行改進(jìn),,學(xué)生學(xué)習(xí)的效率還會有所提高。更好的滲透了數(shù)學(xué)學(xué)習(xí)方法,,發(fā)展了學(xué)生的抽象概括能力和初步的演繹推理能力,。

本節(jié)課我和搭檔池老師先進(jìn)行了股份認(rèn)備課,后相互聽課進(jìn)行集體研討,,我們一致認(rèn)為溝通知識間的前后聯(lián)系非常必要,,而本節(jié)課也主要是借助學(xué)生的已有知識經(jīng)驗(yàn)來解決問題,所以我們在解決問題的過程中都讓學(xué)生充分感知整數(shù),、小數(shù),、分?jǐn)?shù)四則混合運(yùn)算中相關(guān)知識間的聯(lián)系與不同點(diǎn)。在本節(jié)課的分?jǐn)?shù)四則混合運(yùn)算順序與運(yùn)算律的推廣過程中,,池老師借助了整數(shù)與小數(shù),、分?jǐn)?shù)互化,搭建他們之間的聯(lián)系,,讓學(xué)生順理成章的進(jìn)行推理使用,。而我在這里又讓學(xué)生進(jìn)行進(jìn)一步的舉例驗(yàn)證,感知他們的應(yīng)用,,看似有些難度,,但學(xué)生恰是在這樣的證明活動(dòng)中加以推理和掌握知識。我們一起備課,、聽課,,相互提意見,說想法,,不在乎是否比賽,,只享受這樣一次研討成長的過程。

有理數(shù)運(yùn)算律教學(xué)反思篇二

簡便運(yùn)算是一種高級的混合運(yùn)算,是混合運(yùn)算的技巧,,學(xué)好了簡便運(yùn)算,,不僅能提高計(jì)算能力、計(jì)算速度及正確率,,還能使復(fù)雜的計(jì)算變得簡單,,也就是變難為易,變繁為簡,,變慢為快,。同時(shí)能靈活、合理地運(yùn)用各種定律,、性質(zhì),、法則等達(dá)到融會貫通的境界,是計(jì)算題中最能鍛煉學(xué)生思維能力,、開拓學(xué)生思路的一種題型,。所以,在計(jì)算題教學(xué)中應(yīng)重視簡便運(yùn)算,,注重簡便運(yùn)算靈活思路的學(xué)習(xí),,合理地進(jìn)行簡便運(yùn)算,使學(xué)生的思維能力得到提高,。五年級的簡便運(yùn)算的教學(xué)建立在學(xué)生已有對簡便運(yùn)算的認(rèn)識上,。小數(shù)乘法簡便運(yùn)算是整數(shù)乘法簡便運(yùn)算的延伸。

這節(jié)課我以學(xué)生先試后導(dǎo),,先練后講為主線進(jìn)行設(shè)計(jì),,突出學(xué)生的主體地位,發(fā)揮學(xué)生知識遷移能力,。學(xué)生在整體認(rèn)知小數(shù)乘法簡便運(yùn)算的運(yùn)算律方面較容易,在計(jì)算過程中不少學(xué)生忽略了小數(shù)點(diǎn)的移動(dòng),,有以下幾點(diǎn)值得反思,。

做好已有知識結(jié)構(gòu)的遷移。在復(fù)習(xí)時(shí)先請兩名學(xué)生到黑板上做:25×12和 87×46+ 54×87 ,,同時(shí)其他同學(xué)集體練習(xí),。指名說說自己是怎樣想的,提示學(xué)生運(yùn)用的是哪一個(gè)乘法運(yùn)算定律,,實(shí)際有學(xué)生說第二題用的是乘法結(jié)合律,,我并沒有急于否定學(xué)生的答案,而是問學(xué)生乘法結(jié)合律的字母表達(dá)式和乘法分配率的字母表達(dá)式,,并組織學(xué)生進(jìn)行區(qū)別,,以便更好的運(yùn)用這兩個(gè)定律解題。通過復(fù)習(xí)使每一個(gè)學(xué)生進(jìn)一步明確乘法的運(yùn)算定律及它們之間的聯(lián)系與區(qū)別,更加清楚如何運(yùn)用運(yùn)算定律解題,。同時(shí)滲透并思考,,這些運(yùn)算定律在小數(shù)乘法中能不能用,激發(fā)學(xué)生對小數(shù)乘法的簡便運(yùn)算的猜想和求知的欲望,。

教師出示例題4后,,簡單分析題意,學(xué)生用自己的方法解題,。

0.8×1.3○1.3×0.8

(0.9×0.4)×0.5○0.9×(0.4×0.5 )

(3.2+2.8)×0.6○3.2×0.6+2.8×0.6

有學(xué)生通過計(jì)算兩邊的算式結(jié)果來判斷,,大多數(shù)學(xué)生看見算式聯(lián)想到簡便運(yùn)算來判斷,第一種算法確定算式兩邊結(jié)果相等,,第二種算法提供了學(xué)生思維判斷的方法。這樣有效地把整數(shù)乘法的運(yùn)算律和小數(shù)乘法結(jié)合起來,,運(yùn)算方法在小數(shù)乘法中一樣有效,。

為了學(xué)生更好地運(yùn)用運(yùn)算律,,安排了三題練習(xí)題

0.25×0.7×4、 1.25×2.4 3.2×1.02

保留了教材中試一試第一題,,修改了第二題,增加了第三題題,第一題讓學(xué)生理解乘法交換律,,第二題運(yùn)用乘法交換律和結(jié)合律,第三題是運(yùn)用乘法分配律。第二題中2.4的分解是教學(xué)時(shí)一個(gè)難點(diǎn),,不少學(xué)生著重把24分解成8×4,,忽略了小數(shù)點(diǎn),,這個(gè)環(huán)節(jié)的處理不夠好,,未能預(yù)料,。第三題的教學(xué)也是一個(gè)難點(diǎn),不少學(xué)生意識不到把1.02分解成1+0.02,,只是一味去分解3.2,。

鞏固練習(xí)的設(shè)計(jì)除了根據(jù)運(yùn)算定律填空外,還設(shè)計(jì)了各種類型的簡算題,,如:12.5×4.8 0.72×101 3.8×9.9 1.01×2.6 0.25×0.125× 0.4×0.8 0.4×8.2×25-0.3

這些題里有的接近整數(shù),、有的超過整數(shù),、有的要先轉(zhuǎn)化再做,有的運(yùn)用乘法結(jié)合律做,,有的運(yùn)用乘法分配律做,,有的是部分簡算,幾乎涵蓋了所有小數(shù)乘法簡算的各種類型 ,,另外還出現(xiàn)了部分簡算的題,,這樣的題學(xué)生掌握的不好, 關(guān)鍵是根據(jù)運(yùn)算定律判斷是否能簡算,。最后是拓展提高,,3.67×8.9 + 36.7×0.11 86.9×1.73 + 8.69×7.3 這兩道題分別都有兩種解法,學(xué)生根據(jù)剛才做題的經(jīng)驗(yàn),,分析后很快發(fā)現(xiàn)36.7和3.67 ,、86.9和8.69可以互相轉(zhuǎn)化,,怎樣才能使轉(zhuǎn)化后的數(shù)的積不變,利用積不變的規(guī)律就能解決問題,。這樣提高了學(xué)生分析能力和靈活解題的能力,。

整節(jié)課由于課堂密度較大,所以學(xué)生說的多,,動(dòng)筆練習(xí)較少,,使得一部分同學(xué)沒有掌握簡算的方法,尤其是需要轉(zhuǎn)化的題掌握的不好,。其次,,在新知識的探索階段,教師給學(xué)生的時(shí)間較少,,使得同學(xué)沒有充分發(fā)表自己的意見,,小組內(nèi)同學(xué)之間交流的較少。

有理數(shù)運(yùn)算律教學(xué)反思篇三

在教學(xué)《小數(shù)四則混合運(yùn)算》時(shí),,力求轉(zhuǎn)變學(xué)生的學(xué)習(xí)方式,。學(xué)習(xí)方式的轉(zhuǎn)變是課程改革的顯著特征,改變原有的單純接受式的學(xué)習(xí)方式,,讓學(xué)生自主感悟的基礎(chǔ)上,,自然地得出其運(yùn)算順序和整數(shù)是一樣的,。

首先,,課堂上以學(xué)生比較熟悉的生活中的購物的實(shí)例,,列出算式,,并明確應(yīng)該先算什么,,從實(shí)際例子中引導(dǎo)學(xué)生得出運(yùn)算順序,,大大地提高了學(xué)生的學(xué)習(xí)興趣,,克服計(jì)算教學(xué)中的枯燥乏味的心理,。

其次,,課前我是以分類的一種問題情境,,以引導(dǎo)學(xué)生回顧舊有的知識,,不但有助于置學(xué)生于問題情境之中,,而且利于學(xué)生發(fā)現(xiàn)問題能力的形成,;并且在新知感受的環(huán)節(jié)中,我仍是將例題以問題的形式呈現(xiàn),讓學(xué)生發(fā)現(xiàn)問題,解決問題,進(jìn)而認(rèn)識問題,明確知識的要點(diǎn),,真正地讓學(xué)生體驗(yàn)知識的形成。

最后,,在本節(jié)課綜合練習(xí)“計(jì)算接力賽”中,,采用了小組合作學(xué)習(xí)形式,我想這樣做,,不但能改變以往部分“好”學(xué)生壟斷課堂的局面,,大大提高了學(xué)生全面參與的程度,,而且還將教師對學(xué)習(xí)過程的干預(yù)和控制降低到最低限度,使學(xué)生始終擁有高度的自主性,,提高了學(xué)生的計(jì)算興趣,,培養(yǎng)他們合作學(xué)習(xí)的精神,同時(shí)也是促進(jìn)其計(jì)算檢查習(xí)慣的養(yǎng)成,。

但是,,課堂上也出現(xiàn)了自己倍感欠缺的環(huán)節(jié):沒有很好地處理“新知感受”與“運(yùn)用練習(xí)”兩個(gè)環(huán)節(jié)的時(shí)間分配,導(dǎo)致練習(xí)量的不足,,主要原因有以下兩點(diǎn)

1,、是對于學(xué)生課前的預(yù)習(xí)程度了解不夠,反饋中的問題過多,、過繁,,還不夠簡練精辟;

2,、是學(xué)生的基本的口算能力還比較差,,使得課堂練習(xí)的節(jié)奏不快,影響下一環(huán)節(jié)的進(jìn)行,??磥恚€得加強(qiáng)這方面的訓(xùn)練,。

有理數(shù)運(yùn)算律教學(xué)反思篇四

按我原來的理解,混合運(yùn)算的教學(xué)是很簡單的,。無非就是讓學(xué)生明確運(yùn)算順序,,學(xué)生照著既定的運(yùn)算順序進(jìn)行計(jì)算。但陸主任的一席話使我對教材的教學(xué)有了一個(gè)新的認(rèn)識,。以“含有乘法和加,、減法的混合運(yùn)算”為例,談一談我的一些思考:

數(shù)學(xué)源于生活”,。盡管運(yùn)算順序是一定的,,但課堂上再現(xiàn)學(xué)生熟悉的生活情境————到文具店購買文具,從中自然地提出數(shù)學(xué)問題,,把解決實(shí)際問題與計(jì)算教學(xué)緊密結(jié)合,,使學(xué)生體會數(shù)學(xué)與生活的聯(lián)系,,有利于激發(fā)學(xué)生的學(xué)習(xí)興趣,也便于學(xué)生積極調(diào)動(dòng)已有的生活經(jīng)驗(yàn)和知識解決問題,。情境的創(chuàng)設(shè)也能促進(jìn)學(xué)生對運(yùn)算順序的理解。

第一個(gè)問題的解決“乘加混合”學(xué)生還是習(xí)慣地從左往右,,但第二個(gè)問題“乘減混合”顯然不能按照從左往右的順序計(jì)算,,與學(xué)生原有的認(rèn)識組織產(chǎn)生認(rèn)知沖突,。抓住這個(gè)時(shí)機(jī)的運(yùn)算順序的教學(xué),使學(xué)生認(rèn)識到先用乘法算出付出的2盒水彩筆的價(jià)錢,,再用減法算出找回的錢,,最后再總結(jié)出“算式中有乘法和加、減法,,應(yīng)先算乘法,。”

“想想做做”第2題改錯(cuò)可根據(jù)學(xué)生中出現(xiàn)的典型錯(cuò)誤選取,,問題從學(xué)生中來,,讓學(xué)生自己解決,學(xué)生既能糾正自己的錯(cuò)誤,,又能體驗(yàn)到幫助他人解決問題的樂趣,。

有理數(shù)運(yùn)算律教學(xué)反思篇五

數(shù)學(xué)教學(xué)不是一個(gè)簡單的“告訴”,把內(nèi)隱在學(xué)生口算中的乘法分配律顯性化并成為學(xué)生的自覺認(rèn)識,,對于學(xué)生來說并不是一蹴而就的事,,它需要一個(gè)過程,這個(gè)過程就是要讓學(xué)生經(jīng)歷“觀察——體驗(yàn)——猜想——驗(yàn)證”這樣一個(gè)循序漸進(jìn)的探索發(fā)現(xiàn)的過程,。同時(shí),,在這個(gè)過程中,也讓學(xué)生學(xué)會運(yùn)用數(shù)學(xué)的思維方式去觀察,、去思考,、去探索,獲得一些經(jīng)驗(yàn)和方法,,培養(yǎng)進(jìn)一步學(xué)好數(shù)學(xué)的信心,,提升對生活的認(rèn)識,感受自我生命的價(jià)值,。由此,,我緊緊把住乘法分配律教學(xué)的魂,充分挖掘乘法分配律的可探究資源,,讓學(xué)生多次經(jīng)歷有序觀察,、大膽猜想、小心驗(yàn)證的探究性學(xué)習(xí)過程,。在此基礎(chǔ)上,,引領(lǐng)學(xué)生進(jìn)行總結(jié)、反思,、升華,,感悟人生哲理。

(在比較從生活實(shí)踐應(yīng)用中得到的兩個(gè)等式(40+3)×25,、40×25+3×25和(40-3)×25,、40×25-3×25 的不同點(diǎn)后)

師:由此,,你能提出什么猜想?

生:兩個(gè)數(shù)的差與一個(gè)數(shù)相乘,,是否可以用兩個(gè)數(shù)分別與這個(gè)數(shù)相乘,,再把所得的積相減呢?

師:我們驚喜地看到×××同學(xué)在科學(xué)的道路上邁出了關(guān)鍵的一步:大膽的提出了這樣一個(gè)猜想,。如果把他的猜想用字母表示出來,,該怎樣表示?

生:(a-b)×c,、 a×c-b×c

師:這個(gè)猜想能成立嗎,?怎么辦? 師:好,!那就讓我們舉例驗(yàn)證一下,,開始。 (學(xué)生舉例后,,請 2~3 名同學(xué)上臺匯報(bào)展示)

師:由兩個(gè)數(shù)的和與一個(gè)數(shù)相乘,,你還會想到什么?

生 2:三個(gè)數(shù)的和與一個(gè)數(shù)相乘,,是否可以用三個(gè)數(shù)分別與這個(gè)數(shù)相乘,,再把所得的積相加呢?

生 3:很多個(gè)數(shù)的和與一個(gè)數(shù)相乘,,是否可以用很多個(gè)數(shù)分別與這個(gè)數(shù)相乘,,再把所得的積相加呢?

生 4:如果括號里有加有減,,是否可以用這些數(shù)分別與這個(gè)數(shù)相乘,,再把所得的積相加相減呢?

師:同學(xué)們提出了各種各樣的猜想,,讓我們帶著這些猜想課后繼續(xù)探討,相信還會有許多驚人的發(fā)現(xiàn),。

師:在這節(jié)課即將結(jié)束的時(shí)候,,讓我們一起回顧一下,我們是怎樣發(fā)現(xiàn)乘法分配律的,?

生:首先對幾道簡單的口算題進(jìn)行有序的觀察,,然后大膽地提出猜想,用舉例的方法進(jìn)行驗(yàn)證,,最后得出結(jié)論,,發(fā)現(xiàn)了乘法分配律。

師:是啊,,幾道簡單的口算題,,讓我們發(fā)現(xiàn)了一個(gè)重要的運(yùn)算律——乘法分配律,。同樣,簡單的生活現(xiàn)象,,也能生發(fā)出偉大的發(fā)明與發(fā)現(xiàn),。(圖片配音展示)英國科學(xué)家牛頓從蘋果落地的生活現(xiàn)象中引發(fā)思考,發(fā)現(xiàn)了萬有引力定律,,創(chuàng)立了偉大的經(jīng)典力學(xué)理論體系,;美國發(fā)明家萊特兄弟,從鳥的飛行中得到啟示,,發(fā)明了飛機(jī),,實(shí)現(xiàn)了人們翱翔藍(lán)天的夢想??梢赃@樣說,,平凡中孕育著偉大。

師:看了這個(gè)短片,,你有什么想說的,?

生:我們要學(xué)會用心觀察。

生:我們要對生活充滿好奇心,,因?yàn)楹闷嫘氖且磺邪l(fā)現(xiàn)的基礎(chǔ),。

生:許多偉大的科學(xué)發(fā)現(xiàn)都源于我們的日常生活,我們做一個(gè)生活的有心人,。

師:是啊,,只要我們做一個(gè)生活的有心人,勤于觀察,,善于思考,,大膽猜想,小心求證,,也可能會有許多驚人的發(fā)現(xiàn),!讓探索成為我們永恒的追求!

師:通過這節(jié)課的學(xué)習(xí),,你有什么想對老師和同學(xué)說的,?

生:世上無難事,,只怕有心人,。只要我們用心去觀察、去思考,、去探究,我們就會發(fā)現(xiàn)許多沒有發(fā)現(xiàn)的知識。

師:這位同學(xué)說的太妙了!讓我們就以這位同學(xué)的至理名言作為本節(jié)課的結(jié)束語:只要我們用心去觀察、去思考、去探究,就會有所收獲,!讓我們共同努力吧,! 這樣教學(xué),,巧妙地把數(shù)學(xué)教學(xué)提升到科學(xué)教育,、生命教育的層面,,讓學(xué)生感受到數(shù)學(xué)的神奇魅力,感受到科學(xué)探究的巨大價(jià)值,,感悟人生哲理,培養(yǎng)學(xué)生對數(shù)學(xué),、對科學(xué)、對生活,、對自我積極的情感、態(tài)度和價(jià)值觀,。 因此,我們要以冷靜的態(tài)度,、批判的眼光審視當(dāng)下的數(shù)學(xué)教育,,研究教材,,準(zhǔn)確把住數(shù)學(xué)知識的根,,研究學(xué)生,從

有理數(shù)運(yùn)算律教學(xué)反思篇六

教學(xué)目標(biāo):

1,。使學(xué)生經(jīng)歷探索加法運(yùn)算律的過程,,理解并掌握加法的交換律和結(jié)合律,初步感知加法運(yùn)算律的價(jià)值,,發(fā)展應(yīng)用意識,。

2。使學(xué)生在學(xué)習(xí)用符號,、字母表示自己發(fā)現(xiàn)的運(yùn)算律的過程中,,初步發(fā)展符號感,培養(yǎng)歸納,、推理的能力,,逐步提高抽象思維的水平。

3,。使學(xué)生在數(shù)學(xué)活動(dòng)中獲得成功的體驗(yàn),,進(jìn)一步增強(qiáng)對數(shù)學(xué)學(xué)習(xí)的興趣和信心,初步形成探究問題的意識和習(xí)慣,。

教學(xué)重點(diǎn):

讓學(xué)生在探索中經(jīng)歷運(yùn)算律的發(fā)現(xiàn)過程,理解不同算式的相等關(guān)系,,概括運(yùn)算律,。

教學(xué)難點(diǎn):

概括運(yùn)算律并會運(yùn)用,。

教學(xué)過程:

師:為了歡迎聽課的老師,,咱們班同學(xué)準(zhǔn)備了幾束鮮花,。

出示圖:左邊有5束鮮花,右邊有4束鮮花,,一共有幾束鮮花,?怎樣列式?

生:5+4=9,,4+5=9,。(師板書:5+4○4+5)

師(小結(jié)):這兩個(gè)算式結(jié)果相等,我們就可以用等號把它們連接,,變成一個(gè)等式,。這個(gè)等式里蘊(yùn)藏著我們今天要探索的規(guī)律,猜一猜,,是什

么,?是不是所有像這樣的加法算式都有這樣的規(guī)律呢,?今天我們繼續(xù)探究。

(一)教學(xué)加法交換律

1,。出示情境圖:體育課,,同學(xué)們正在操場上做運(yùn)動(dòng)。

師:從圖中你了解到哪些數(shù)學(xué)信息,?你能提出一些用加法解決的問題嗎,?

生1:跳繩的有多少人?怎么列式計(jì)算,?(17+28=45,,28+17=45,17+28○28+17)

生2:女生有多少人呢,?(23+17○17+23)

師:繼續(xù)觀察這兩道算式,,你發(fā)現(xiàn)了什么?中間可以用什么符號連接,?

2,。那么,你能再寫出幾道像這樣的等式嗎,?

(學(xué)生寫后,,同桌互查,指名交流,,師相繼板書三道等式) 師:這些都是等式嗎,?怎樣驗(yàn)證?這些等式都有什么特點(diǎn),?

3,。師:像這樣的等式還有很多,咱們能舉完嗎,?(師板書省略號)那么,,你能用自己喜歡的方法把自己發(fā)現(xiàn)的規(guī)律表示出來嗎?(學(xué)生交流后,,再看書自學(xué)p56)

提問:通過學(xué)習(xí),,你知道可以怎樣表示?你覺得哪種表示方法最能體現(xiàn)數(shù)學(xué)簡潔明了的特點(diǎn),?(集體反饋并總結(jié),,師板書a+b= b+a) 師:這個(gè)等式表示什么?(生交流,,師板書加法交換律)

4,。師:其實(shí),加法交換律和我們并不陌生,。357+218,,你想到了什么,?(生交流驗(yàn)算的依據(jù))

師:那么,你知道為什么調(diào)換加數(shù)的位置,,和不變嗎,?(看的方向不同,但總數(shù)不變)

(二)教學(xué)加法結(jié)合律 1,。課件出示問題:參加活動(dòng)的一共有多少人,?怎樣列式計(jì)算?(學(xué)生交流,,師板書:28+17+23)

師:先算什么,?(根據(jù)學(xué)生的回答,師添上小括號)還可以先算什么,? (生加括號,,并說計(jì)算過程)

師:這兩道算式結(jié)果怎樣?可以用什么符號連接,?(師板書,,生齊讀)

2。算一算,,下面的○里能填上等號嗎,?

(45+25)+13○45+(25+13) (36+18)+22○36+(18+22)

3。引導(dǎo)比較,,發(fā)現(xiàn)規(guī)律,。

師:比較這幾道等式,,你發(fā)現(xiàn)每組兩個(gè)算式有什么異同,?(同桌討論后交流)

師根據(jù)學(xué)生回答進(jìn)一步追問:什么變了?什么不變,? (引導(dǎo)學(xué)生抓住不變的三層含義分析相同點(diǎn))

師(小結(jié)):其實(shí)三個(gè)數(shù)相加,,改變運(yùn)算順序,和不變,。

【評析:加法結(jié)合律的內(nèi)容,,學(xué)生在以往的學(xué)習(xí)中接觸不多,沒有太多的感性基礎(chǔ),,盡管憑直覺知道左右兩邊算式結(jié)果相等,,但對左右兩邊算式的異同點(diǎn)表述并不是很清楚。這就要求教師要做到心中有數(shù),,引導(dǎo)學(xué)生

從變與不變的角度去分析,。只有層層剝筍,使學(xué)生抓住了加法結(jié)合律的本質(zhì)特征,,這樣在后面的運(yùn)算律混合練習(xí)中才不會混淆不清,?!?/p>

4。你能照樣子再寫一道這樣的算式嗎,?

師:既然這樣的等式寫不完,,那么也可以用字母等式來表示這樣的規(guī)律。如果用字母a,、b,、c表示三個(gè)加數(shù),你能表示出這個(gè)規(guī)律嗎,?(學(xué)生獨(dú)立寫一寫,,然后指名板演,師生一起檢查這個(gè)等式)

師(小結(jié)):三個(gè)數(shù)連加,,先把前兩個(gè)數(shù)相加或先把后兩個(gè)數(shù)相加,,再與另一個(gè)數(shù)相加,和不變,。這就是加法結(jié)合律,。(板書課題)

5。學(xué)習(xí)加法結(jié)合律又有什么用呢,?(出示如下題目)你能很快口算嗎,?運(yùn)用了什么?(學(xué)生說口算過程,,體會加法結(jié)合律的用處) 35+40+60 64+(36+78)18+25+75

【評析:學(xué)以致用,。如果在學(xué)習(xí)之后不能使學(xué)生很快嘗到“甜頭”,學(xué)生則從心理上就不會完全將新知內(nèi)化,。所以通過快速口算,,讓學(xué)生省略書寫過程,只從形式上去感受運(yùn)用加法結(jié)合律帶來的好處,,強(qiáng)化學(xué)習(xí)運(yùn)算律的目標(biāo)意識,。】

師:今天我們學(xué)習(xí)了什么,?有沒有信心接受挑戰(zhàn),?

1。下面的等式各用了什么運(yùn)算律,?

①82+0=0+82,;

②47+(30+8)=(47+30)+8;

③(84+68)+32=84+(68+32),;

④75+(48+25)=(75+25)+48,。

2。你能在□里填上合適的數(shù)嗎?說說你是依據(jù)什么填的,。 ①6+35=35+□,;

②a+204=□+a;

③(45+36)+64=45+(□+□),;

④560+(40+c)=(560+□)+ □,;

⑤560+(180+440)=(560+ □)+□。

3,。完成課本p58第五題,,學(xué)生獨(dú)立完成后指名口答。

4,。拓展練習(xí),。(挑戰(zhàn)題)

①64+25+136+75=(64+□)+(25+□);

②30+28+70+72=(□+□)+(□+□),;

③5×4=4×□,;

④6×4×25=6×(□×□)。

師:加法交換律,、結(jié)合律對四個(gè)數(shù)相加,、五個(gè)數(shù)相加適用嗎?更多數(shù)相加呢,?由加法交換律,、加法結(jié)合律你還能聯(lián)想到什么?乘法是否也具有這樣的運(yùn)算律,?大家的猜想對不對呢,?你們課后能像這節(jié)課一樣去探究驗(yàn)證一下嗎?

【評析:練習(xí)設(shè)計(jì)既重視基本知識的訓(xùn)練,,又能充分挖掘習(xí)題的功能,,及時(shí)進(jìn)行拓展訓(xùn)練,培養(yǎng)不同層次學(xué)生的思維水平,。特別是最后兩道乘法式題的練習(xí),,引導(dǎo)學(xué)生在學(xué)習(xí)加法運(yùn)算律基礎(chǔ)上去猜想乘法是否也具有這樣的運(yùn)算律,,為學(xué)生溝通了知識之間的聯(lián)系,,實(shí)現(xiàn)了學(xué)生思維的可持性發(fā)展?!?/p>

有理數(shù)運(yùn)算律教學(xué)反思篇七

關(guān)于這節(jié)課的第一個(gè)環(huán)節(jié)——由加法交換律,、加法結(jié)合律進(jìn)而猜想出乘法交換律、乘法結(jié)合律的內(nèi)容,。那么我在想我們在解決一個(gè)實(shí)際的問題時(shí),,會不會有一個(gè)即定的方法。通常情況下我們不可能知道應(yīng)該朝哪一個(gè)方向去猜想,需要我們?nèi)ニ阉?,有時(shí)它會突然冒出來(即直覺),。所以我認(rèn)為猜想的重點(diǎn)是怎樣把聯(lián)想的對象(這里指加法交換律、加法結(jié)合律)找出來(即找到一個(gè)思考的方向)這應(yīng)該是這節(jié)課的關(guān)鍵,。

這節(jié)課驗(yàn)證的過程是這樣:因?yàn)樗袑W(xué)生寫出來的算式都證明這個(gè)定律是正確,,所以這個(gè)定律是對的。這個(gè)過程對嗎,?實(shí)際上這個(gè)過程不一定正確,,雖然在小學(xué)階段主要采用的是演繹法和不完全歸納法。驗(yàn)證的過程應(yīng)該是學(xué)生對定律內(nèi)容的理解,,舉例子只能說明學(xué)生對定律內(nèi)容的一個(gè)表層的認(rèn)識,,是非常具體的(即根據(jù)定律的字面意思去理解)。應(yīng)該引導(dǎo)學(xué)生從乘法意義上理解乘法交換律(如6×7,,7×6它們都表示6個(gè)7相加是多少或7個(gè)6相加是多少,,它們表示的是同一個(gè)意義,所以它們的積是相同的),,這樣的話學(xué)生對乘法交換律的理解是更進(jìn)一步的即在抽象層面上的,。我后來覺得是否可以這樣:當(dāng)學(xué)生引出了字母公式后,師:我們通過舉例子可以知道這個(gè)定律是正確的,,那你們還有其他的想法,?(如果沒有)師:能不能根據(jù)乘法意義來理解這個(gè)乘法交換律?(讓學(xué)生說說怎么去理解)

從這幾個(gè)方面來說:1對兩個(gè)定律的理解,,停留在表面沒有對內(nèi)容進(jìn)行深入的理解(進(jìn)行抽象的概括)從學(xué)生方面來說,,缺乏挑戰(zhàn),沒有難度,。特別對乘法結(jié)合律的理解,,沒有能及時(shí)地進(jìn)行總結(jié),以至當(dāng)出現(xiàn)于內(nèi)容不是一致的時(shí)候)學(xué)生就覺得有點(diǎn)困難,。對結(jié)合律的理解應(yīng)該讓學(xué)生理解到結(jié)合律就是三(幾)個(gè)數(shù)相乘,,不管那兩個(gè)數(shù)相乘再和第三個(gè)數(shù)相乘,它們的積都一樣,。要使學(xué)生這樣去理解,。第一,通過舉例子(寫出算式來驗(yàn)證),;第二,,通過生活實(shí)際來理解三個(gè)數(shù)相乘是怎么回事。最后可以問:學(xué)習(xí)了這兩個(gè)定律你認(rèn)為有什么用,?(讓學(xué)生說到可以使計(jì)算簡便),。我認(rèn)為如果這樣的話,,自己這節(jié)課有個(gè)非常突出的特點(diǎn)就是以一種學(xué)習(xí)方法貫串整節(jié)課:聯(lián)想_猜想_驗(yàn)證_抽象

有理數(shù)運(yùn)算律教學(xué)反思篇八

本學(xué)期學(xué)習(xí)了乘法運(yùn)算定律。乘法運(yùn)算定律包括乘法交換律,、乘法結(jié)合律,。

學(xué)生對于加法交換律和乘法的交換律掌握較好,然而對于乘法結(jié)合律則運(yùn)用得不太理想,。

反思造成的原因及解決辦法如下:

第一,,學(xué)生現(xiàn)在只是能夠初步認(rèn)識,還不明白這幾個(gè)運(yùn)算定律的作用和意義,。

第二,,學(xué)生不能正確的分析算式并正確的運(yùn)用運(yùn)算定律,如遇到25× 16就不知道如何計(jì)算 ,,有時(shí)會把16分成10×6,,有時(shí)會寫成25×10+6 ,針對上述情況還需對學(xué)生加強(qiáng)算理,、算法的理解,,更要在學(xué)生的腦海中滲透“湊整”的思想。

第三,,對于有些算式,,有的學(xué)生甚至運(yùn)用運(yùn)算定律折騰了一番又回到了原來的算式,不會靈活處理,。

綜上所述,,學(xué)生并沒有深刻體會到運(yùn)算定律帶來的方便,解決辦法可以是多講多練,,多做一些對比性強(qiáng)(能簡便與不簡便的混合運(yùn)算)的題目,,不斷的培養(yǎng)學(xué)生的數(shù)感,在不斷的重復(fù)練習(xí)過程中,,體會應(yīng)該如何運(yùn)用運(yùn)算定律,,(以能湊成整十、整百的優(yōu)先組合為原則)也就是如何做題,。等接觸的題目類型多了,,我想學(xué)生會感悟到原來在計(jì)算的過程中運(yùn)用運(yùn)算定律可以使運(yùn)算過程變得簡單,這樣,,學(xué)生在計(jì)算的時(shí)候,,自然就會去運(yùn)用了,而且會十分的感興趣

有理數(shù)運(yùn)算律教學(xué)反思篇九

加法的交換律和結(jié)合律1,、教材p56~58例題和想想做做,。

1、通過觀察,、比較和分析,歸納出加法交換律和結(jié)合律。

2,、在學(xué)習(xí)過程中,,理解并掌握加法交換律和結(jié)合律,并會進(jìn)行運(yùn)算,。

3,、培養(yǎng)學(xué)生分析、判斷,、推理能力,,提高學(xué)生解決問題的能力。

理解加法交換律,、結(jié)合律,,并能正確運(yùn)用。

通過觀察和分析概括出加法交換律和結(jié)合律,,并會用字母表示,。

課件。

1,、開門見山:今天我們一起來學(xué)習(xí)“運(yùn)算律”,。

2、看:(運(yùn)算)我們學(xué)過哪些運(yùn)算,?

“律”指什么,?那今天我們要研究什么?

3,、想想,,今天會研究哪一種運(yùn)算的規(guī)律?為什么先研究加法,?(一年級先認(rèn)識加法)從幾步計(jì)算研究,?(一步)

4、好,,我們就從簡單的入手,,先研究簡單的,再研究復(fù)雜的,,好嗎,?

(一)、研究加法交換律,。

1,、出示書本情境圖引入。

仔細(xì)看圖,,你能提一個(gè)最簡單的用加法計(jì)算的一步問題嗎,?

預(yù)設(shè):跳繩的有多少人,?

女生有多少人?

2,、解決問題,,初步感知。

怎樣列式,?

28+17=45(人)17+28=45(人)

17+23=40(人)23+17=40(人)

觀察第一組兩個(gè)算式,,你發(fā)現(xiàn)什么?引導(dǎo)板書:28+17=17+28

那第二組兩個(gè)算式呢,?板書:17+23=23+17

3,、引發(fā)猜想,舉例驗(yàn)證,。

問:是不是所有的兩個(gè)數(shù)相加,,交換加數(shù)的位置,和都不變呢,?

既然是猜想就需要驗(yàn)證,,怎樣來驗(yàn)證?(板書:猜想驗(yàn)證)

請同學(xué)們在練習(xí)紙上舉例驗(yàn)證猜想,。學(xué)生寫等式,。然后交流算式,初步感知規(guī)律。

4,、觀察等式,,發(fā)現(xiàn)規(guī)律,。

問:觀察這些等式,,說說它們有什么共同特點(diǎn),?

小結(jié):兩個(gè)加數(shù)相加,,交換加數(shù)的位置,,它們的和不變,。

5、引導(dǎo)學(xué)生探索加法交換律的表達(dá)方式,。

①教師提出:能不能用一個(gè)等式來表示我們發(fā)現(xiàn)的規(guī)律,?同桌討論。

匯報(bào):

預(yù)設(shè)1:我們用數(shù)字(文字)表示

2:我們用符號表示

3:我們用字母表示

②比較表示的不同方式,,提出用字母表示發(fā)現(xiàn)的規(guī)律比較簡潔,。

出示板書:a+b=b+a

指出:這樣的規(guī)律就是加法交換律。(板書)

想一想,,以前學(xué)習(xí)中什么地方用過它,?

引入:簡單的研究過了,下面我們要研究稍微復(fù)雜一點(diǎn)的,,這幅圖,,你還能提什么問題呢?

(二)研究加法結(jié)合律,。

1,、再次出現(xiàn)主題圖。

研究:參加活動(dòng)的一共有多少人,?

學(xué)生列式后,板書等式:(28+17)+23=28+(17+23)

觀察比較上面算式,,思考:等式左右兩邊什么變了,?什么沒變,?

2、豐富表象,初構(gòu)規(guī)律。

完成書上的兩組算式,,再次比較等式左右兩邊的“變”與“不變,。

問:你發(fā)現(xiàn)了什么,?

3、舉例驗(yàn)證,,確認(rèn)規(guī)律,。

學(xué)生小組合作,進(jìn)一步舉例驗(yàn)證規(guī)律,。

三個(gè)數(shù)相加,,先把前兩個(gè)數(shù)相加,再同第三個(gè)數(shù)相加,,或者先把后兩個(gè)數(shù)相加,再同第一個(gè)數(shù)相加,,它們的和不變,。

得出加法結(jié)合律,嘗試用字母表示:板書(a+b)+c=a+(b+c)

(三)比較兩種運(yùn)算律的異同,。

說說兩種運(yùn)算律不同點(diǎn)是什么,?相同點(diǎn)是什么?

1,、完成第2題,,重點(diǎn)讓學(xué)生說說后面兩題兩個(gè)數(shù)結(jié)合了有什么好處。

2,、完成“想想做做”第1題,。重點(diǎn)講第4個(gè)是交換和結(jié)合律一起使用。

3,、比一比,,誰算得快。完成第三題,。

4,、拓展560+(140+70)=(□+□)+□

(64+□)+27=64+(□+27)

71+68+□

你認(rèn)為□里填什么數(shù)會使你的計(jì)算簡便?怎樣簡便計(jì)算?

5,、游戲:找朋友,。

(1)哪兩個(gè)同學(xué)手上的樹葉的和是100?

(2)同桌一個(gè)同學(xué)說出一個(gè)數(shù),,另一個(gè)同學(xué)馬上說出一個(gè)與它的和是整百,、整千的數(shù)。

今天這節(jié)課我們學(xué)習(xí)了什么知識,?你是怎樣獲得這些知識的,?那么在減法、乘法,、除法中,,有沒有這樣的規(guī)律呢?課后大家可以繼續(xù)研究,。

課堂作業(yè):《補(bǔ)充習(xí)題》,。

板書設(shè)計(jì):略

教學(xué)反思:

《加法運(yùn)算律》這一節(jié)課是在學(xué)生經(jīng)過較長時(shí)間的四則運(yùn)算學(xué)習(xí),對四則運(yùn)算已有較多的感性認(rèn)識的基礎(chǔ)上學(xué)習(xí)的,。學(xué)生從小學(xué)低年級開始就接觸過加法的驗(yàn)算和口算等方面的知識,,對此有較多的感性認(rèn)識,這是學(xué)習(xí)加法運(yùn)算律的基礎(chǔ),。在這節(jié)課中,,我有意識地讓學(xué)生運(yùn)用已有的經(jīng)驗(yàn),經(jīng)歷運(yùn)算律的發(fā)現(xiàn)過程,,讓學(xué)生在“觀察,、發(fā)現(xiàn)、猜想,、驗(yàn)證,、得出結(jié)論”的數(shù)學(xué)學(xué)習(xí)方法中學(xué)會學(xué)習(xí)。一節(jié)課下來,,自我感覺做得較成功的有以下幾點(diǎn):

小學(xué)生學(xué)習(xí)數(shù)學(xué)的積極性一定程度上取決于他們對學(xué)習(xí)素材的興趣,,現(xiàn)實(shí)的問題情境、有趣的數(shù)學(xué)游戲容易激發(fā)他們學(xué)習(xí)的欲望,。所以上課伊始,,我以學(xué)生身邊熟悉的:跳繩、踢毽子為教學(xué)的切入點(diǎn),,激發(fā)學(xué)生主動(dòng)學(xué)習(xí)數(shù)學(xué)的需要,,為學(xué)生進(jìn)行教學(xué)活動(dòng)創(chuàng)設(shè)了良好的氛圍。先讓學(xué)生觀察情境圖,,從圖上獲得哪些信息,?根據(jù)這些信息你可以提出什么問題,?這樣的導(dǎo)入既吸引了學(xué)生注意力,又培養(yǎng)了學(xué)生的問題意識,。學(xué)生能馬上提出一些問題,,為后面的探究學(xué)習(xí)做好了鋪墊。通過情境,,組織學(xué)生認(rèn)真觀察,,分析根據(jù)提供的信息來選擇所提問題有聯(lián)系的條件進(jìn)行分析、計(jì)算,,使學(xué)生經(jīng)歷加法運(yùn)算律產(chǎn)生和形成的過程,。

數(shù)學(xué)課程標(biāo)準(zhǔn)指出:最有價(jià)值的知識是關(guān)于方法的知識,“授之以魚不如授之以漁”,。從一開始學(xué)習(xí)加法交換律時(shí),,讓學(xué)生通過參與學(xué)習(xí)活動(dòng)得出觀察、發(fā)現(xiàn),、猜想,、驗(yàn)證、結(jié)論這一學(xué)習(xí)方法,。并應(yīng)用這一方法去學(xué)習(xí)加法結(jié)合律,。讓學(xué)生在合作與交流中去探究加法的結(jié)合律,合理地構(gòu)建知識,。學(xué)生掌握了學(xué)習(xí)方法就等于拿到了打開知識寶庫的金鑰匙,。在教學(xué)時(shí),我注意了以下幾方面的問題:一是在猜測中產(chǎn)生舉例驗(yàn)證的心理需求,。在學(xué)生根據(jù)問題情境得28+17=45,、17+28=45之后,學(xué)生通過觀察發(fā)現(xiàn)交換兩個(gè)加數(shù)的位置,,和相等。我適時(shí)提出這樣的猜想:“是不是任意兩個(gè)加數(shù)交換位置,,和都相等呢,?”學(xué)生不敢肯定,有了舉例驗(yàn)證的內(nèi)在需求,。二是注意讓學(xué)生在交流共享中充實(shí)學(xué)習(xí)材料,,增強(qiáng)結(jié)論的可靠性。課上的時(shí)間有限,,學(xué)生的獨(dú)立舉例是很有限的,,我通過讓學(xué)生同桌合作,共同舉例,,達(dá)到資源共享,,豐富了學(xué)習(xí)材料和數(shù)學(xué)事實(shí),,知識的歸納順理成章。三是鼓勵(lì)學(xué)生用喜歡的方法表示規(guī)律,。學(xué)生思維的浪花又一次激起,,有的用圖形表示:△+○=○+△,有的用文字表示:甲數(shù)+乙數(shù)=乙數(shù)+甲數(shù),,也有的用字母表示:a+b=b+a,。這樣的思維方式既是對加法交換律的概括與提升,又能發(fā)展符號感,。

在課堂上我及時(shí)評價(jià)總結(jié),,肯定學(xué)生在學(xué)習(xí)過程中的點(diǎn)滴進(jìn)步,捕捉學(xué)生在探索過程中的閃光點(diǎn),。學(xué)習(xí)內(nèi)容的理解也提升到一個(gè)更高的層面,。

當(dāng)然,一節(jié)課下來也有不少遺憾,。在課堂教學(xué)中,,我沒有準(zhǔn)確把握好每一個(gè)孩子,駕馭課堂的能力還不夠,。整節(jié)課,,由于新授部份花的時(shí)間較多,顯得有些拖沓,,有些細(xì)節(jié)引導(dǎo)還不是很到位,,還需要加強(qiáng),但在以后的教學(xué)中我會不斷地挖掘,,不斷學(xué)習(xí),。

有理數(shù)運(yùn)算律教學(xué)反思篇十

(根據(jù)問題情境得出28+17=17+28后)

師:仔細(xì)觀察左右兩道算式,你有什么發(fā)現(xiàn),?

生:我發(fā)現(xiàn)兩個(gè)加數(shù)的位置調(diào)換了,。

生:我發(fā)現(xiàn)兩個(gè)加數(shù)的位置交換后,和是不變的,。

師:是不是所有加法算式中交換加數(shù)的位置,,和都不變呢?

生:是,。

生:不是,。

師:接下來,請大家舉例驗(yàn)證,。老師給大家提幾條建議:(1)自己舉例,、計(jì)算。(2)小組交流:是否存在例外的情況,?(3)推薦一名代表上臺展示驗(yàn)證實(shí)例,。

(學(xué)生舉例交流)

生:23+17=4017+23=4017+23=23+40,、45+50=50+40、300+540=540+300

師:加法算式中加數(shù)的位置換了,,和有不相等的例外情況嗎,?

生:沒有。

師:從這些例子中,,你可以發(fā)現(xiàn)什么規(guī)律,?

生:兩個(gè)加數(shù)的位置交換后,和是不變的,。

生:我也發(fā)現(xiàn)交換兩個(gè)加數(shù)的位置,,和不變。

師:你能用自己喜歡的方法表示出這一發(fā)現(xiàn)嗎,?

生:甲+乙=乙+甲

生:△+○=○+△

生:□+○=○+□

生:a+b=b+a

師:你們想的辦法真多,。用字母表示數(shù)是數(shù)學(xué)學(xué)習(xí)中的重要策略,用a,、b表示兩個(gè)加數(shù),,這個(gè)規(guī)律可以寫成a+b=b+a。

師:你能幫這個(gè)規(guī)律取個(gè)名嗎,?

師:在加法交換律中,,變化的是(兩個(gè)加數(shù)的位置),不變的是(它們的和),。原來變與不變還可以這樣巧妙地結(jié)合在一起的,。

蘇霍姆林斯基指出:“在人的心靈深處,都有一種根深蒂固的需要,,這就是希望自己是一個(gè)發(fā)現(xiàn)者,、研究者、探索者,,而在兒童的精神世界中,,這種需要更為強(qiáng)烈?!痹谶@種思想的指導(dǎo)下,,我在加法交換律的教學(xué)中,注意充分發(fā)揮學(xué)生的主體作用,,引導(dǎo)學(xué)生經(jīng)歷規(guī)律的不完全歸納的過程,讓學(xué)生在自主探究中體驗(yàn)探索與創(chuàng)造的快樂,,從而在一種自然而然的心理需求下發(fā)現(xiàn)并總結(jié)出屬于自己的運(yùn)算律,。

在教學(xué)時(shí),我注意了以下幾方面的問題:

一是在猜測中產(chǎn)生舉例驗(yàn)證的心理需求,。在學(xué)生根據(jù)問題情境得出28+17=17+28之后,,學(xué)生通過觀察發(fā)現(xiàn)交換兩個(gè)加數(shù)的位置,,和不變。我適時(shí)提出這樣的問題:“是不是所有加法算式中交換加數(shù)的位置,,和都不變呢,?”學(xué)生的猜想不一,有了舉例驗(yàn)證的內(nèi)在需求,。

二是注意讓學(xué)生在交流共享中充實(shí)學(xué)習(xí)材料,,增強(qiáng)結(jié)論的可靠性。課上的時(shí)間有限,,學(xué)生的獨(dú)立舉例是很有限的,,我通過讓學(xué)生小組交流、全班交流,,達(dá)到資源共享,,豐富了學(xué)習(xí)材料和數(shù)學(xué)事實(shí),知識的歸納順理成章,。

三是鼓勵(lì)學(xué)生用喜歡的方法表示規(guī)律,。學(xué)生思維的浪花又一次激起,有圖形表示的,,有文字表示的,,也有字母表示的。既是對加法交換律的概括與提升,,又能發(fā)展符號感,。

四是注意不斷為后繼學(xué)習(xí)作準(zhǔn)備。除了前面提到的舉例驗(yàn)證和用不同方式表示運(yùn)算律,,還有當(dāng)學(xué)生總結(jié)歸納出加法交換律后,,讓學(xué)生再次觀察加法交換律中的變與不變,既深化了對加法交換律的認(rèn)識,,又為學(xué)生后繼學(xué)習(xí)規(guī)律作了充分準(zhǔn)備,,提高學(xué)生探索規(guī)律的能力。

全文閱讀已結(jié)束,,如果需要下載本文請點(diǎn)擊

下載此文檔
你可能感興趣的文章
a.付費(fèi)復(fù)制
付費(fèi)獲得該文章復(fù)制權(quán)限
特價(jià):5.99元 10元
微信掃碼支付
已付款請點(diǎn)這里
b.包月復(fù)制
付費(fèi)后30天內(nèi)不限量復(fù)制
特價(jià):9.99元 10元
微信掃碼支付
已付款請點(diǎn)這里 聯(lián)系客服